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The quantitative structure-bioavailability relationship of 232 structurally diverse drugs was
studied to evaluate the feasibility of constructing a predictive model for the human oral
bioavailability of prospective new medicinal agents. The oral bioavailability determined in
human adults was assigned one of four ratings and analyzed in relation to physicochemical
and structural factors by the ORMUCS (ordered multicategorical classification method using
the simplex technique) method. A systematic examination of various physicochemical param-
eters relating primarily to absorption, and structural elements which could influence
metabolism, was carried out to analyze their effects on the bioavailabilty classification of drugs
in the data set. Lipophilicity, expressed as the distribution coefficient at pH 6.5, was found to
be a significant factor influencing bioavailability. The observation that acids generally had
better bioavailability characterizitics than bases, with neutral compounds between, led to the
formulation of a new parameter, ∆ log D (log D6.5 - log D7.4), which proved to be an important
contributor in improving the classification results. The addition of 15 structural descriptors
relating primarily to well-known metabolic processes yielded a satisfactory QSAR equation
which had a correct classification rate of 71% (97% within one class) and a Spearman rank
correlation coefficient (Rs) of 0.851, despite the diversity of structure and pharmacological
activity in the compound set. In leave-one-out tests, an average of 67% of drugs were correctly
classified (96% within one class) with an Rs of 0.812. The relationship formulated identified
significant factors influencing bioavailability and assigned them quantitative values expressing
their contribution. The predictive power of the model was evaluated using a separate test set
of 40 compounds, of which 60% (95% within one class) were correctly classified. Since the
necessary physicochemical parameters can be calculated or estimated and the structural
descriptors are obtained from an inspection of the structure, the model enables a rough estimate
to be made of the prospective human oral bioavailability of unsynthesized compounds. Also,
the model has the advantage of transparency in that it indicates which factors may affect
bioavailabilty and the extent of that effect. This could be useful in designing compounds which
are more bioavailable. Refinement of the model is possible as more bioavailability data becomes
available. Potential uses are in drug design, prioritization of compounds for synthesis, and
selection for detailed studies of early compound leads in drug discovery programs.

Introduction

In the design of new drugs intended for oral use,
enhancement of the oral bioavailability of an active lead
compound is a subject of great importance. All too often
promising new drug candidates fail because of inad-
equate bioavailability. Oral bioavailability involves
several factors, such as gastrointestinal transit and
absorption, chemical stability in the gastrointestinal
tract, and the first pass effect of gut wall and liver
metabolism. Although various QSAR studies of con-
generic compounds have been reported concerning dif-
ferent processes affecting oral bioavailability,2-4 an
overall quantitative relationship between the oral bio-
availability of structurally diverse compounds and their
physicochemical/structural properties has proved to be
an elusive goal due to the complexity of the factors
involved. However, the ability to predict the approxi-
mate human oral bioavailability of compounds from

their physicochemical properties and structure prior to
synthesis would be of great practical benefit in the
design of new drugs. Recently, Hirono et al.5 published
a study of the quantitative property-bioavailability
relationships for 188 noncongeneric diverse organic
medicinals. The compounds were divided into three
groups, nonaromatics, aromatics, and heteroaromatics,
and separate equations were formulated for each group
which were statistically reliable and satisfactory. How-
ever, in addition to the need for prior classification of
the compounds into one of the three groups, the lipo-
philicity of the compounds was not separately identified
as a factor, although many studies have reported that
this is one of the most important properties which
determines absorption and metabolism.2-4 Also some of
the descriptors used were not clearly linked to those
known to influence bioavailability through absorption
and metabolism.

Our goal was to construct a simple method involving
a single equation for predicting the approximate human
oral bioavailability of new “drug-like” compounds based
on the summation of a contribution value for various
physicochemical and structural features related to
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absorption and metabolism. If such a relationship could
be successfully established, it would not only permit the
estimation of the approximate bioavailability of candi-
date compounds prior to synthesis but would also
provide information concerning the modification of
physicochemical and structural factors necessary for the
enhancement of oral bioavailability. In this work we
have attempted to determine the important factors
influencing bioavailability and give them quantitative
values expressing the contribution to bioavailability
employing the ORMUCS (ordered multicategorical
classification method using the simplex technique)
method. This method is a modified form of discriminant
analysis6 designed for use in QSAR work involving the
type of noncontinuous activity (property) data utilized
in this study (see the Methods section). The compounds
used in the analysis consisted of 130 bases, 58 neutral
compounds, and 44 acids for a total of 232. Compound
selection for the analysis was based on the accessibility
of human bioavailability data and physicochemical data
and the objective of having as diverse a group of drugs
as possible with regard to pharmacological activity class
and physicochemical characteristics. In the model de-
velopment, compounds with experimentally determined
partition coefficients were predominantly employed in
order to provide the most accurate assessment of the
contribution of this parameter.

Methods
Bioavailability. Bioavailability data in healthy human

subjects were collected from the literature.7 When two or more
values for a drug were available or a value had a range, the
averaged value was employed. However, for benzodiazepines,
there were large differences in data originating from different
sources, so the datum of ref 6a was used for consistency. In
the case of drugs whose bioavailability is dose-dependent, the
data obtained at the normal therapeutic dose was used. The
bioavailability value of each drug was represented as a rating
according to the ranges shown in Table 1 to reflect the fact
that there was variability in the data which was determined
under somewhat different experimental conditions by many
investigators. The ranges were set to represent reasonable and
useful categories for differentiation of bioavailability.

There were 37 drugs in class 1, 54 in class 2, 63 in class 3,
and 78 in class 4.

In this paper bioavailability represents the percentage of
an administered dose of a parent compound reaching the
systemic circulation after oral administration. Types of drugs
excluded from the analysis were prodrugs, whose bioavailabil-
ity values were for an active metabolite; unstable compounds,
such as nitroglycerine; those existing in the neutral form
mainly as zwitterions at physiological pH, such as ACE
inhibitors; and quaternary ammonium compounds.

Physicochemical and Structural Parameters. As an
overall measure of lipophilicity, the log P value (n-octanol/
water) was used. These were mostly taken from the literature8

or otherwise calculated using the CLOGP program9 or the
MLOGP method10 or estimated from that of a similar com-
pound. For ionizable compounds, values of log D (log distribu-
tion coefficient) at a given pH were calculated11 from log P and
literature or estimated pKa values12 using a simply constructed
program in Excel. In this analysis, the log D values at the pH
of blood and the small intestine were considered to be of
primary relevance. The pH of the blood was taken as 7.4 and

the pH of the small intestine as 6.5.13 Other physicochemical
parameters considered which may relate to absorption were
hydrogen-bonding potential, molecular weight, and solubility.

Possible structural descriptors relating to metabolism con-
sidered were those for readily hydrolyzable entities such as
esters, lactones, and carbamates; readily oxidized moieties
such as dihydropyridines and thiols; phenols and alcohols
(conjugation/oxidation); sulfonamides (conjugation); aromatic,
benzylic, and allylic oxidation; aromatic/heterocyclic amines
(acetylation); N and O dealkylation; ketones (reduction);
aromatic nitro groups (reduction) and amides (cleavage). A key
factor with regard to the effect of metabolism of a particular
structural entity on bioavailabity is the rate at which this
takes place. Thus, some well-known metabolic transformations
may occur too slowly to have a material effect on bioavailabil-
ity.

ORMUCS Method. The ORMUCS method was developed
by Takahashi et al.14 and is useful for the development of
discriminant functions for modeling ordered classes. It is an
adaptive least squares (ALS) related approach using a simplex
technique for the derivation of a single discriminant function
and was shown to be more stable than the ALS method in this
respect. A detailed description and applications of the OR-
MUCS method have been reported.14-16 Only the principal
features are presented here. The discriminant function of
classification is

described by eq 1 where xi is the ith component of X
represented as a pattern vector in the d-dimensional measure-
ment space, and wi is the weight assigned to the component.
The vector W consists of w1, w2, ..., wd, and is called a weight
vector. The rules of classification are defined by the following
equation:

In eq 2, C(k)
min and C(k)

max are the lower and upper limits of
the discriminant score for the category k, respectively. These
rules are also adopted to develop the discrimination function.
The optimization procedure of the weight vector in this
function as shown in eq 1 is described in detail elsewhere.14

Two criteria were employed for the evaluation of the weight
vector. One is the recognition rate R shown below.

Nc is the number of samples correctly classified using the
weight vector, and Nt is the total number of samples. The other
is the perceptron function J.

where

In eq 5, W is the weight vector to be evaluated, Xi is an
element of the set of patterns misclassified, SE, and k is the
class to which the pattern Xi belongs. C(k)

lim is the limited value
of the class k. Among the weight vectors, a larger value of R
is more desirable. If the values of R for one or more weight
vectors are equal to one another, the one with the smallest
value of J should be selected as the best weight vector.

Computation. All computations were carried out on a
Power Macintosh 7100/80AV. The original ORMUCS program

Table 1. Bioavailability Classification

class 1 class 2 class 3 class 4

rating 1 2 3 4
bioavailability (%) e20 20-49 50-79 g80

S(X) ) WX ) ∑
i)1

d

wixi (1)

C(k)
min e S(X) < C(k)

max implies X ∈ class k (2)

R ) Nc/Nt (3)

J ) ∑
Xi∈SE

|W‚X(k)
i - C(k)

lim| (4)

C(k)
lim ) C(k)

min for W‚X(k)
i < C(k)

min

C(k)
lim ) C(k)

max for W‚X(k)
i > C(k)

max (5)
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developed by Dr. T. Takahashi was converted for use on the
Power Macintosh 7100/80AV with the assistance of Mr. E.
Kouno.

Results and Discussion

Relationship between Bioavailability and Lipo-
philicity. Numerous QSAR studies have reported that
the lipophilicity of a compound plays a significant role
in its absorption in the gastrointestinal tract and
metabolism in the gut wall and liver.2-4 The most
relevant measure of lipophilicity with regard to oral
absorption by passive diffusion is probably the distribu-
tion coefficient (log D) at pH 6.5, which is the pH of the
small intestine, where absorption mostly takes place.13

In the present study the distribution of log D (pH 6.5)
within each bioavailability class is illustrated in Figure
1. It can be seen that the distribution peak broadens as
bioavailability decreases. Also, there is some tendency
for compounds with higher log D values to have poorer
bioavailability. Further insight is provided by the data
in Table 2, which shows that over 99% of highly
bioavailable compounds have log D6.5 values in the
range -2.0 to 3.0. Also (Table 3) it was observed that,
in general, bases showed poorer bioavailability charac-
teristics than acids. Thus, whereas bases were about
equally divided between the less bioavailable com-
pounds (classes 1 and 2) and the more bioavailable
compounds (classes 3 and 4), some 89% of acids were
in the higher bioavailability categories. Neutral com-
pounds were split about two to one, favoring higher

bioavailability. This led to the formulation of a new
parameter, ∆ log D () log D6.5 - log D7.4), which
expresses the difference between the fractions of the
neutral form at two given pH values, 6.5 and 7.4, for
an ionizable compound. Compounds with positive values
of ∆ log D are acidic, whereas compounds with negative
values are basic. Thus, compounds with positive ∆ log
D values will tend to have better bioavailability char-
acteristics, other things being equal. This may reflect
the fact that these compounds have a higher fraction of
neutral compound present (the form in which the
compound is absorbed) at the relevant absorption pH
(6.5) and, once absorbed, a lower fraction of neutral
compound present (pH 7.4) that would be subject to liver
metabolism (in contrast with the ionized form). As is
apparent from eqs 6 and 7 in Table 4, employment of
the ∆ log D parameter in combination with the parabolic
form of log D6.5 resulted in a marked improvement in
the classification results. Thus, from eq 7 the optimum
value of log D6.5 for the overall processes involving
absorption and first-pass effect is around 0.7. It has been
reported17 that absorption from the intestinal tract of
rats generally shows a parabolic relationship with log
P (or log D for ionizable compounds) and an optimal
value of around 2.0 for log P. The optimum value from
the present analysis is lower, reflecting possible species
differences and the fact that bioavailability involves
metabolism, which tends to increase with increasing
lipophilic character.

QSAR Model. Proceeding from the results discussed
in the preceding section, other physicochemical param-
eters identified previously were examined along with
the log D6.5 and ∆ log D terms in an attempt to further
improve the QSAR model. Hydrogen-bonding potential
and molecular weight at high values are known to
adversely affect absorption;18 however, these were not
material since an insignificant number of compounds
in the data set had such high values. A drug may be
poorly absorbed if its water solubility is very low, and
this effect will be dose dependent. An example is
mercaptopurine, which has a very low solubility (<0.1
mg/mL) and a bioavailability of 12% at an approximate
dose of 360 mg.19 The inclusion of dose and solubility
data in the classification analysis was unnecessary since
solubility correlates well with log D6.5 for the vast
majority of compounds. In addition to exploration of the
physicochemical parameters, structural descriptors re-
lating to metabolism listed previously were examined
as possible variables in the model. A descriptor was not
incorporated unless it was present in at least six
compounds. These descriptors were added to the model
if they resulted in a significant improvement of the
classification results as judged by the number of com-
pounds misclassified by one category, those misclassified
by two categories, and the Spearman rank correlation
coefficient. Descriptors were added to the model in order
of their importance in improving the classification
results. In general, descriptor definitions were made as
broad as possible and, with the exception of descriptors

Figure 1. A histogram expressing the distribution of log D6.5

within each bioavailability class.

Table 2. log D6.5 Values by Bioavailability Class

bioavailability class log D6.5 range % compounds

4 -2.0 to 3.0 99
3 -2.0 to 3.0 94
2 -2.0 to 3.0 81
1 -2.0 to 3.0 65

Table 3. Composition of Data Set by Bioavailability Class and
Compound Type

bioavail. class base neutral acid total

1 20 17 0 37
2 46 3 5 54
3 45 11 7 63
4 19 27 32 78
total 130 58 44 232

Table 4. Initial Classification Results

eq log D6.5 (log D6.5)2 ∆ log D intercept n nmis Rs

6 0.207 -0.253 5.039 232 131(68) 0.342
7 0.207 -0.145 1.496 4.906 232 118(32) 0.562
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17 and 18, all were based on well-known metabolic
pathways. However, it was necessary to refine these to
reflect various factors, mainly steric and electronic
effects, likely to affect metabolism, to achieve optimal
significance of the descriptor in the model. As part of
this process metabolic data on individual or subclasses
of compounds were considered. Also, although most of
the structural limitations in the descriptor definitions
were based on understood factors, some were empiri-
cally derived.

The end result of this process was eq 8 with 18
descriptors, which is presented in Table 5. In Table 6,
the classification results and compound scores of indi-
vidual compounds from eq 8, which determine their
classification, are shown. In this equation, n is the
number of compounds in the analysis, and nmis, the
number misclassified. The figure in parentheses shows
the number misclassified by two ratings. RS is Spear-
man’s rank correlation coefficient. The weight vector,
wi, denotes the weighting of a particular descriptor in
contributing to the total classification score. Descriptors
take the value of 1 unless otherwise indicated. For the
structural descriptors (except no. 16) the weight vector
is multiplied by the number of times it is present in a
compound. The classification score for a compound is
the sum of the contributions from all of the individual
descriptors which apply to that compound. The contri-
bution index, CI, is the product of the weight vector and
the standard deviation and indicates the degree of
contribution of a descriptor to discrimination between
the different classification categories. Higher values

denote a higher degree of contribution and importance
in achieving the discrimination. Boundary numbers
represent the scores of boundary points between the four
bioavailabilty classes. Compound scores of >4 predict
a compound to belong to bioavailability class 4, scores
between 3 and 4 correspond to bioavailability class 3,
scores between 2 and 3 indicate bioavailability class 2,
and a score of below 2 predicts bioavailability class 1.
From eq 8 in Table 5 it can be seen that the QSAR model
correctly classifies 165 of the 232 compounds (71%) in
the data set with 8 of the 67 misclassified compounds
off by two categories. Thus, 224 of 232 compounds (97%)
are correctly classified ( one class. The latter is an
appropriate measure to include as a criterion in judging
the model given the large range of some bioavailabilty
data, which may straddle adjoining classes. The Spear-
man rank correlation coefficient of 0.851 is highly
significant. The statistics for the leave-one-out tests,
which relate to the predictive power of the equation, are
also favorable. The degree of improvement achieved by
the addition of structural descriptors relating to me-
tabolism can be seen by comparing eq 8 with eq 7. A
more detailed discussion of the classification results is
presented in a later section.

The important role of lipophilicity terms in the final
model is shown by their CI values. From eq 8 the
optimum log D6.5 is -0.3 and a progressive negative
impact on bioavailability is seen as values move away
from this level. A log D6.5 value of 3.0 results in a
reduction of the bioavailability score of 0.5 and a value
of 5.0 reduces the score by 1.3. The ∆ log D descriptor

Table 5. The QSAR Model

S(X) ) Σwisi (8)

no. descriptors si weight wi CIa nb

1 log D6.5 -0.027 0.05 232
2 (log D6.5)2 -0.046 0.25 232
3 ∆ log D (log D6.5 - log D7.4) 0.370 0.23 232
4 phenolic OHc (excluding di-ortho-subst) -1.032 0.45 22
5 SO2NH2 -1.014 0.17 7
6 alcoholic OH (excluding tert-OH)d -0.177 0.09 59
7 hydrolysis: esters,e lactones, â-lactams, alkyl carbamates -1.074 0.37 24
8 aromatic p-hydroxylationf -0.599 0.26 33
9 ArCH2-Rg (excluding di-ortho subst Ar) -0.235 0.12 47

10 allylic oxidation (C-CdC)h -0.201 0.09 13
11 tert-alicyclic amine (no ring heteroatoms)i -0.340 0.10 24
12 XCCNR (R ) Me, Et; X ) N,O, Ar, CdC)j -0.410 0.15 28
13 readily oxidized moieties: thiols, dihydropyridines -1.137 0.24 11
14 ketonesk -0.493 0.10 15
15 NO2 on a benzene ring (excluding ortho subst) -0.148 0.03 7
16 ArNH2, ArNHNH2, ArCONHNH2, ArC(dNH)NH2 as pKa valuel -0.034 0.04 16
17 HOCCNH tert-alkyl, HOCCN< (cyclic rings) 0.210 0.05 16
18 benzodiazepine (with no additional fused rings) 0.231 0.05 10

constant 4.358

n ) 232 (four classes); boundaries, 2.0, 3.0, 4.0; recognition, nmis ) 67(8), Rs ) 0.851
(p < 0.0001); leave-one-out, nmis ) 76(10), Rs ) 0.812 (p < 0.0001)

a Contribution index. The product of the weighting coefficient and standard deviation for each descriptor. b n ) total number of each
of the descriptors used in the analysis. c Except with o-CO2H, o-CONH2 and o-CH2OH substituents, which can undergo intramolecular
hydrogen bonding with the phenolic OH group. d For steroids this descriptor is 0 for 11-â-OH substituents (steric hindrance) and 2 for
17-â-OH substituents (unless tert) due to high susceptibility to first-pass metabolism. e Weighting is 0.5, where the carbon R to the carbonyl
is tertiary or where the carbonyl can undergo intramolecular hydrogen bonding with a nearby group. f Applies where there is an open
para position with respect to the activating groups OR, N(R)R1, NHC(dO)R (R,R1 ) H, alkyl, aryl, aralkyl) with no ring substituents
beyond one ortho to the activating group. The activating group and an ortho substituent may be part of a fused ring. g R ) H, CH2X,
where X ) C or H and is not attached to a polar atom. h Excluding steroidal ring A dienones and allylic substructures of the types
CdC-C-X and CdC-C-C-X, where X is a polar atom. i Excluding ring systems with a bridged N atom such as quinine and quinidine.
j Weighted by 2 for OdCCNR; see the text. k Excluding R,â-unsaturated dienones, diaryl-ketones, and ketones with a heteroatom attached
at the R-position. Corrected (-0.5) for R-branching on the aliphatic side and R,â-unsaturation. l If a molecule contains two or more amino
groups the most basic group with no ortho substitution is selected.
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Table 6. Compound Classification and Scores

class

no. drug typea log D6.5 ∆ log Db pKa structural descriptorsc obsd calcd score (calcd)

1 adrenaline B -3.49 -0.90 9.9 4(2), 6, 12 1 1 0.90
2 alprenolol B 0.40 -0.89 9.2 6, 8, 9, 10 1 2 2.80
3 clomethiazole N 2.12 0.00 9 1 3 3.86
4 coumarin N 1.39 0.00 7, 9 1 2 2.92
5 dobutamine B -0.48e -0.90 9.5 4(3), 9 1 1 0.70
6 domperidone B 2.83 -0.75 7.7 8, 11 1 2 2.70
7 dopamine B -3.37 -0.90 8.9 4(2), 9 1 1 1.29
8 epanolol B -0.40 -0.77 7.8f 4, 6, 8 1 2 2.27
9 estradiol N 4.01 0.00 4, 6(2), 9 1 1 1.89

10 felodipine N 3.22e 0.00 7, 13 1 1 1.58
11 hydralazine B 0.14 -0.61 7.3 8(1.5), 16(7.3) 1 2 2.98
12 isradipine N 1.72e 0.00 7,13 1 1 1.96
13 ketamine B 1.14 -0.69 7.5 12(2), 14(0.5) 1 2 2.95
14 lofepramine B 4.58e -0.32 6.7f 8(2), 9(2), 12(2) 1 1 0.66
15 lovastatin N 4.26 0.00 6, 7(2), 10(2) 1 1 0.68
16 mebendazole N 2.83 0.00 7 1 2 2.84
17 meptazinol B 0.71e -0.88 8.7 4,11 1 2 2.62
18 mercaptopurine B -1.12 -0.72 7.6 13 1 2 2.93
19 nabumetone N 2.83d 0.00 9, 14 1 3 3.18
20 nalbuphine B -0.63 -0.88 8.7 4, 6, 11 1 2 2.48
21 naloxone B 0.64 -0.81 7.9 4, 11 1 2 2.65
22 nimodipine N 0.73 0.00 7, 13, 15 1 1 1.96
23 nisoldipine N 1.58 0.00 7, 13 1 1 1.99
24 nitrendipine N 0.97 0.00 7, 13, 15 1 1 1.93
25 phenolphthalein N 2.41 0.00 4(2), 7 1 1 0.89
26 probucol N 7.29e 0.00 1 1 1.70
27 prochlorperazine B 2.51 -0.69 7.5 8, 12 1 2 2.73
28 progesterone N 3.87 0.00 10, 14 1 2 2.87
29 selegiline B 0.62e -0.89 9.2f 12 1 3 3.58
30 simvastatin N 4.68 0.00 6, 7(2), 10(2) 1 1 0.49
31 sumatriptan B -2.07 -0.90 9.4f 12 1 3 3.47
32 tacrine B -0.59 -0.90 9.8 9, 16(9.8) 1 3 3.45
33 terbutaline B -1.82d -0.89 8.8 4(2), 6, 17 1 1 1.89
34 testosterone N 3.32 0.00 6(2), 10, 14(0.5) 1 2 2.96
35 tetrahydrocannabinol N 4.49e 0.00 4, 9, 10(3) 1 1 1.43
36 venlafaxine B -2.29 -0.89 9.2 12 1 3 3.44
37 xamoterol B -0.80d -0.78 7.8f 4, 6 1 2 2.85
38 acebutolol B -0.99 -0.89 9.2 6, 14 2 3 3.34
39 alprazolam B 1.10 -0.16 6.2f 9 2 3 3.98
40 amitriptyline B 2.14 -0.90 9.4 9(2), 12 2 2 2.88
41 chlorpromazine B 2.49 -0.89 9.2 8 2 3 3.07
42 cisapride B 1.79e -0.75 7.7f 11, 16(0.60) 2 3 3.52
43 clemastin B 1.65 -0.89 9.2f 11 2 3 3.52
44 chlorothiazide A -0.45 0.57 6.7 5 2 3 3.56
45 desipramine B 1.20 -0.90 10.2 8(2), 9(2) 2 2 2.26
46 dextropropoxyphene B 2.20 -0.89 9.2f 7 2 2 2.67
47 diltiazem B 1.47 -0.75 7.7 7, 12 2 2 2.46
48 diprafenone B 0.59 -0.89 9.2f 6, 8, 9, 14, 17 2 2 2.70
49 doxepin B 1.55e -0.82 8.0 8, 12 2 2 2.89
50 encainide B -0.34e -0.90 10.2 8, 9, 11 2 2 2.86
51 ethinyl estradiol N 3.67 0.00 4, 9 2 2 2.37
52 etilefrine B -2.86d -0.90 9.8f 4, 6, 12 2 2 2.10
53 famotidine B -1.27 -0.52 7.1 5 2 3 3.11
54 fluorouracil A -0.89 0.10 8.0 2 4 4.38
55 imipramine B 1.80 -0.90 9.5 8(2), 9(2) 2 2 2.16
56 indoramine B 1.56 -0.75 7.7 8, 11 2 2 2.99
57 isoprenaline B -2.76 -0.88 8.7 4(2), 6 2 1 1.51
58 isotretinoin A 4.30 0.90 4.5f 10(4) 2 2 2.91
59 labetalol B 0.35 -0.90 9.3 6, 9 2 3 3.60
60 lidocaine B 0.88 -0.79 7.9 9, 12(2) 2 2 2.95
61 lorcainide B 1.44 -0.88 8.7f 11 2 3 3.56
62 medifoxamine B -0.43e -0.89 9.2f 8(2), 12 2 2 2.40
63 metoprolol B -1.32 -0.90 9.7 6 2 3 3.80
64 mianserin B 2.78e -0.52 7.1 8, 9, 12 2 2 2.52
65 midazolam B 1.37 -0.14 6.1 9 2 3 3.95
66 moricizine B 2.73 -0.21 6.4 7, 8 2 2 2.19
67 morphine B -2.34 -0.90 9.6 4, 6, 11 2 2 2.29
68 nadolol B -2.46 -0.90 9.7 6(3), 17 2 3 3.49
69 nafcillin A -0.84e 0.90 2.7 7 2 3 3.61
70 naltrexone B 0.84 -0.84 8.1 4, 11 2 2 2.62
71 nicardipine B 1.18 -0.72 7.6f 7, 12, 13, 15 2 1 1.23
72 nicotine B -0.34 -0.82 8.0 11 2 3 3.72
73 oxacillin A -1.32 0.90 2.8 7, 9 2 3 3.34
74 oxprenolol B -0.72 -0.90 9.3 6, 8, 9 2 3 3.01
75 pentazocine B 1.05 -0.88 8.8 4, 10(2), 11 2 2 2.18
76 pentoxifylline N 0.29 0.00 14 2 3 3.85
77 phenylephrine B -3.02 -0.90 9.8 4, 6, 12 2 2 2.06
78 pimozide B 5.42 -0.62 7.3 8, 11 2 1 1.68
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Table 6 (Continued)

class

no. drug typea log D6.5 ∆ log Db pKa structural descriptorsc obsd calcd score (calcd)

79 pirenzepine B -1.51 -0.83 8.1 8, 12 2 2 2.98
80 prenalterol B -1.61d -0.89 9.2f 4, 6 2 2 2.74
81 promethazine B 2.21 -0.89 9.1 8(2), 12 2 2 2.13
82 propafenone B 0.15e -0.89 9.2f 6, 8, 9, 14 2 2 2.52
83 propanolol B -0.02 -0.90 9.5 6, 8(1.5) 2 2 2.95
84 ritodrine B -1.00d -0.89 9.0 4(2), 6 2 1 1.77
85 salbutamol B -2.69d -0.90 9.3 6(2), 17 2 3 3.62
86 scopolamine B 0.11 -0.72 7.6 6, 7(0.5), 11, 12 2 2 2.62
87 spironolactone N 2.78 0.00 7(2), 10, 14(0.5) 2 1 1.53
88 sulpiride B -2.04 -0.89 9.0 5, 11, 12 2 2 2.13
89 thioridazine B 2.90 -0.90 9.5 8, 11 2 2 2.62
90 triazolam B 2.26 -0.14 6.2f 9 2 3 3.78
91 verapamil B 1.39 -0.89 8.9 2 3 3.90
92 acetaminophen N 0.51 0.00 4 3 3 3.30
93 acetylsalicylic acid A -1.81 0.90 3.5 7 3 3 3.51
94 amantadine B -1.86 -0.90 10.8 3 3 3.91
95 amiodarone B 2.29 -0.29 6.6 9, 12 3 3 3.30
96 amlodipine B 0.78 -0.90 9.5f 7(2), 13 3 1 1.77
97 atenolol B -2.66 -0.90 9.3 6 3 3 3.59
98 atropine B -1.37 -0.90 9.7 6, 7(0.5), 11, 12 3 2 2.51
99 bepridil B 1.10 -0.90 9.3f 8, 11 3 3 3.00

100 betamethasone N 1.94 0.00 6 3 3 3.96
101 bevantolol B 1.11 -0.87 8.4 6, 9 3 3 3.54
102 brotizolam B 2.63 -0.14 6.2f 9 3 3 3.68
103 bufuralol B 1.00 -0.89 9.0 6, 9, 17 3 3 3.75
104 captopril A -1.78d 0.90 3.7 13 3 3 3.45
105 chloramphenicol N 1.14 0.00 6(2), 15 3 3 3.77
106 chlorpheniramine B 0.69 -0.89 9.2 3 3 3.99
107 chlorphthalidone N 0.22d 0.00 5 3 3 3.34
108 cimetidine B -0.08 -0.38 6.8 9 3 3 3.99
109 clomipramine B 2.49 -0.89 9.2f 8, 9(2) 3 2 2.61
110 clopenthixol B 2.71 -0.83 8.1f 6, 17 3 3 3.67
111 clozapine B 1.81 -0.81 8.0 8, 12 3 2 2.85
112 codeine B -0.28 -0.80 7.9 6, 11 3 3 3.55
113 dexamethasone N 1.83 0.00 6 3 3 3.98
114 diclofenac A 2.69 0.89 4.8 8 3 3 3.68
115 dicloxacillin A -0.79 0.90 2.8 7, 9 3 3 3.37
116 diphenhydramine B 0.77 -0.89 9.0 12 3 3 3.57
117 doxazosin B 1.14e -0.25 6.5 8, 16(6.5) 3 3 3.35
118 enoximone N 2.32e 0.00 9 3 3 3.81
119 ethambutol B -4.02 -0.90 9.5 6(2) 3 3 3.24
120 finasteride N 3.03 0.00 3 3 3.85
121 fluoxetine B 0.92 -0.90 10.2f 3 3 3.96
122 flupenthixol B 2.88 -0.83 8.1 6, 17 3 3 3.62
123 fluvoxamine B -0.13e -0.90 9.5f 3 4 4.24
124 furosemide A -0.02 0.90 4.7 5 3 3 3.68
125 haloperidol B 1.42 -0.86 8.3 11, 14 3 3 3.08
126 hydrochlorothiazide A -0.19 0.42 7.0 5 3 3 3.50
127 levobunolol B -0.40 -0.90 9.3 6, 14, 17 3 3 3.57
128 levomepromazine B 1.98 -0.89 9.2f 8 3 3 3.19
129 maprotiline B 0.52 -0.90 10.5 3 3 3.99
130 meperidine B 0.25 -0.88 8.7 7(0.5), 11 3 3 3.15
131 metoclopramide B -0.18 -0.90 9.3 12, 16(0.6) 3 3 3.60
132 moclobemide B 1.26e -0.15 6.2 3 4 4.19
133 nifedipine N 0.42 0.00 7(2), 13 3 2 2.13
134 nifurtimox N 0.08 0.00 3 4 4.36
135 nitrazepam N 2.25 0.00 15, 18 3 4 4.15
136 norethisterone N 2.97 0.00 10 3 3 3.67
137 nortriptyline B 1.08 -0.90 9.7 9(2), 12 3 3 3.06
138 omeprazole B 2.21 -0.02 5.2f 9 3 3 3.83
139 ondansetron B 1.13e -0.61 7.3f 9, 14(0.5) 3 3 3.56
140 paroxetine B -1.96e -0.90 11.2f 3 3 3.90
141 penbutolol B 1.35 -0.90 9.3 6, 8, 17 3 3 3.34
142 perphenazine B 2.88 -0.77 7.8 6, 8, 17 3 3 3.05
143 pindolol B -0.55 -0.88 8.8 6 3 3 3.85
144 prazosin B 1.04e -0.25 6.5 16(6.5) 3 3 3.96
145 primaquine B -2.19e -0.90 10.3f 3 3 3.86
146 procainamide B -1.82 -0.89 9.2 12, 16(3.5) 3 3 3.39
147 procyclidine B 1.30e -0.88 8.8f 11 3 3 3.58
148 quinidine B 1.08 -0.86 8.3 6, 10 3 3 3.58
149 raclopride B 0.43 -0.89 9.2 11, 12 3 3 3.26
150 ranitidine B -1.44 -0.84 8.2 3 3 3.99
151 timolol B -0.99 -0.90 9.3 6, 17 3 4 4.04
152 triamterene B 0.80 -0.15 6.2 16(6.2) 3 4 4.04
153 urapidil B 0.90 -0.52 7.1 8 3 3 3.50
154 zofenoprilat A -0.64e 0.90 3.7f 13 3 3 3.55
155 allopurinol N -0.55 0.00 4 4 4.36
156 amobarbital A 2.05 0.13 7.8 4 4 4.16
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Table 6 (Continued)

class

no. drug typea log D6.5 ∆ log Db pKa structural descriptorsc obsd calcd score (calcd)

157 amrinone B -0.72 -0.02 5.2f 16(3.0) 4 4 4.24
158 betaxolol B -0.07 -0.90 9.4 6 4 3 3.85
159 bisoprolol B -0.83 -0.89 9.2f 6 4 3 3.84
160 bumetanide A -1.84e 0.90 4.0 5 4 3 3.57
161 caffeine N -0.07 0.00 4 4 4.36
162 carbamazepine N 2.45 0.00 4 4 4.01
163 carteolol B -1.35 -0.89 9.2f 6, 17 4 4 4.01
164 chlorambucil A 2.29 0.82 5.8 4 4 4.12
165 chlordiazepoxide B 2.43 -0.01 4.8 18 4 4 4.25
166 chloroquine B 0.33 -0.90 9.9 4 4 4.01
167 chlorpropamide A 0.76 0.89 5.0 4 4 4.64
168 cibenzoline B -0.37e -0.90 10.3 4 4 4.03
169 clobazam N 0.95 0.00 18 4 4 4.52
170 clonazepam N 2.41 0.00 15, 18 4 4 4.11
171 clonidine B 0.06 -0.82 8.0 4 4 4.05
172 cyclophosphamide N 0.63 0.00 4 4 4.32
173 desmethyldiazepam N 2.93 0.00 18 4 4 4.11
174 diazepam N 2.99 0.00 18 4 4 4.09
175 diazoxide A 1.20 0.03 8.5 9 4 4 4.03
176 diflunisal A 0.94 0.90 3.0 4 4 4.62
177 disopyramide B -1.08 -0.90 10.4 4 4 4.01
178 ethanol N -0.31 0.00 6 4 4 4.19
179 ethosuximide N -0.33d 0.00 4 4 4.36
180 flecaninide B 0.24 -0.90 9.3 4 4 4.02
181 flurbiprofen A 1.81 0.90 4.2 4 4 4.49
182 fluconazole N -0.11d 0.00 4 4 4.36
183 flucytosine N -1.65d 0.00 16(2.9) 4 4 4.18
184 flunitrazepam N 2.06 0.00 15, 18 4 4 4.19
185 gemfibrozil A 1.47e 0.89 4.8f 9(2) 4 4 4.08
186 glipizide A 1.31 0.81 5.9 9 4 4 4.32
187 glyburide A 1.85 0.87 5.3 4 4 4.47
188 hexobarbital A 1.48 0.04 8.3 10(2) 4 3 3.83
189 ibuprofen A 2.18 0.88 5.2 4 4 4.40
190 indomethacin A 2.27 0.90 4.5 4 4 4.39
191 isoniazide N -0.70 0.00 16(2.1) 4 4 4.28
192 isosorbide 2-nitrate N -0.40 0.00 6 4 4 4.18
193 isosorbide 5-nitrate N -0.15 0.00 6 4 4 4.18
194 ketoprofen A 1.21 0.89 4.6 4 4 4.59
195 ketolorac A -1.34d 0.90 3.5 4 4 4.64
196 lorazepam N 2.51 0.00 6, 18 4 4 4.05
197 mabuterol B -0.03e -0.90 9.7f 6, 17 4 4 4.06
198 methadone B 1.16 -0.90 9.3 14(0.5) 4 3 3.69
199 methylprednisolone N 1.66d 0.00 6 4 4 4.01
200 metronidazole N -0.02 0.00 6, 9, 17 4 4 4.16
201 mexiletine B -0.55 -0.89 9.2 9(2) 4 3 3.56
202 naproxen A 1.04 0.90 4.2 4 4 4.61
203 nitrofurantoin N -0.47 0.00 4 4 4.36
204 nizatidine B -0.08 -0.38 6.8 4 4 4.22
205 oxaprozin A 3.41 0.84 5.8f 4 4 4.04
206 oxazepam N 2.24 0.00 6, 18 4 4 4.20
207 phenobarbital A 1.43 0.21 7.5 4 4 4.30
208 phenylbutazone A 1.06 0.90 4.4 4 4 4.61
209 phenylethylmalonamide N 0.13 0.00 4 4 4.35
210 phenytoin A 2.47 0.10 8.0 4 4 4.05
211 prednisolone N 1.62 0.00 6 4 4 4.02
212 prednisone N 1.46 0.00 6, 14(0.5) 4 3 3.80
213 primidone N 0.91 0.00 4 4 4.30
214 probenecid A 0.11 0.90 3.4 4 4 4.69
215 protriptyline B 0.34 -0.84 8.2 4 4 4.03
216 quinine B 0.34 -0.88 8.8 6, 10 4 3 3.64
217 salicylic acid A -1.24 0.90 3.0 8 4 4 4.05
218 sulfadiazine A -0.39 0.65 6.5 16(2.3) 4 4 4.52
219 sulfamethoxazole A 0.11 0.83 5.8 9, 16(2.3) 4 4 4.35
220 sulfinpyrazone A -1.40 0.90 2.8 4 4 4.64
221 sulfisoxazole A -0.50 0.89 5.0 9, 16(2.3) 4 4 4.37
222 temazepam N 2.19 0.00 6, 18 4 4 4.13
223 tenoxicam A 0.56 0.88 5.1f 4 4 4.66
224 theophylline A -0.02 0.02 8.8 4 4 4.37
225 tocainide B -0.56 -0.78 7.8 9(2) 4 3 3.60
226 tolbutamide A 1.11 0.87 5.3 9 4 4 4.36
227 tolmetin A -0.21 0.90 3.5 9 4 4 4.46
228 trazodone B 1.47 -0.33 6.7 4 4 4.10
229 trimethoprim B 0.13 -0.57 7.2 16(3.5) 4 4 4.02
230 valproic acid A 1.04 0.89 4.8 4 4 4.61
231 warfarin A 1.28 0.88 5.1 14 4 4 4.08
232 zalcitabine N -1.33 0.00 6, 16(3.5) 4 4 4.01

a A ) acid, B ) base, N ) neutral. Compounds not significantly ionized at pH 6.5 and 7.4 (∆ log D ) 0.00) are designated as neutral.
b log D6.5 - log D7.4. c See Table 5 and the main text. Numbers in parentheses represent scaling factors. d Derived from the CLOGP value.
e Derived from the MLOGP value. f Estimated.
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adjusts the log D of a compound caused by the change
in pH following intestinal absorption and it is a very
significant contributor to the discrimination. Presum-
ably, partitioning from blood to liver tissues increases
with log D7.4, resulting in increased compound metabo-
lism. In this regard it has been shown4 that the
induction of P448 in rat liver by miscellaneous com-
pounds in vivo correlated strongly with lipophilicity.
Also, several QSAR studies of liver microsomal oxidation
demonstrated that the metabolic reactions were signifi-
cantly dependent on lipophilic character.4 In addition,
acidic and neutral comounds have the advantage of
better gastric absorption compared to basic compounds.

Reviewing the individual structural descriptors con-
tained in eq 8, it is apparent that the presence of
phenolic OH and SO2NH2 groups have a marked and
highly significant effect in reducing oral bioavailability,
as seen from the weighting vectors and CI values for
these descriptors. Phenolic hydroxyl groups are suscep-
tible to transformation in the gut wall and liver and can
be conjugated in several ways. Sulfonamide groups are
known to be metabolized via N-acetylation by N-
acetyltransferase and can be conjugated. In addition,
it has been reported20 that OH, SO2NH2, and NHCOCH3
groups on a benzene ring negatively affected the rate
of intestinal absorption in rats. Also, a QSAR study has
demonstrated that the absorption rate in rats decreased
in relation to the number of phenolic hydroxyl groups
present.21 The negative effects on oral absorption of
these groups is consistent with findings that H-bond-
donor acidity is a significant factor in decreasing
membrane permeability and the absorption of com-
pounds from the gastrointestinal tract.22,23

As expected, descriptor 7, covering hydrolytic cleavage
(enzymatic or other) of susceptible functions such as
esters, lactones, â-lactams, and alkyl carbamates is a
strong and highly significant contributor in reducing
bioavailability. Alcoholic OH groups (descriptor 6) are
numerous in the data set and, as expected, reduce
bioavailability, presumably through conjugation and
oxidation, although the effect is quite moderate.

Various metabolic carbon oxidative processes are
covered by descriptors 8-10, all playing a significant
role in reducing bioavailability. Of these, hydroxylation
of an activated aromatic ring (descriptor 8) has the
largest effect, with aryl methyl and allylic groups
(descriptors 9 and 10) contributing to a lesser extent.
Descriptor 8 was extended beyond the definition given
in the Table 5 footnote to include propranolol and
hydralazine, which undergo extensive aromatic ring
oxidation.24 The value of the descriptor for propranolol
was estimated as 1.5 on the basis of the reported HOMO
levels25 for aniline (-8.53 eV), 1-aminonaphthalene
(-8.11 eV), and benzene (-9.44 eV), which indicate the
relative ease of oxidation. The value for hydralazine was
similarly estimated as 1.5.

N-Dealkylation is covered by descriptors 11 and 12.
As can be seen from the definitions for these in Table
5, the structural requirements are quite limiting, re-
flecting the fact that this process does not always occur
rapidly enough to significantly affect bioavailability.
Descriptor 12 for the XCCNMe (or Et) moiety (where X
) O,N) appears to capture an electronic effect which
facilitates the N-demethylation (or deethylation) proc-

ess. As far as can be determined, there are no publica-
tions describing the electronic effect directly, but two
interesting examples were found where this may play
a role. The demethylation rates for tertiary methyl-
amines (R1N(Me)R2) were analyzed, and a QSAR was
derived with log P and pKa.26,27 The amine with R1 )
C(Me)2C(dO)Me was omitted from the analysis because
it was demethylated very rapidly, despite the hydro-
philic substituent. Also, in a study of the N-dealkylation
of N-alkylamphetamines, replacement of an N-ethyl by
a 2-cyanoethyl group to give N-cyanoethylamphetamine
markedly increased N-dealkylation.28 In the present
analysis the descriptor was important to account for the
rapid dealkylation of certain compounds, such as
lidocaine and ketamine.

Other readily oxidized entities, thiols and dihydro-
pyridines, are accounted for by descriptor 13, which has
a marked influence on bioavailability, as shown by the
high weight vector. Ketones, covered by descriptor 14,
are generally metabolically transformed by reduction,
and this can have a quite pronounced effect on bioavail-
ability. Aromatic nitro groups (descriptor 15) are also
reduced and contribute to the equation but with mar-
ginal significance, as denoted by the very low CI
number.

Descriptor 16 accounts for the susceptibility of aro-
matic and heterocyclic amines, hydrazines, hydrazones,
and amidines to metabolic acetylation and oxidation,
which are scaled by their pKa values, reflecting their
relative reactivity in this process.

The presence of certain types of â-amino alcohol
moieties, primarily found in â-adrenergic and some
antipsychotic drugs (descriptor 17), results in a positive
bioavailability contribution in the model. The origin of
this is not clear but may be due in part to a correction
of the alcohol descriptor arising from an electronic effect
of the amino function. Another positive contributor is
descriptor 18 for the presence of the benzodiazepine ring
system, which may be correcting for too large a negative
effect from the log D6.5 term. The contribution index for
both of these descriptors in the model is small, and if
the descriptors were dropped from the model, the effect
on the overall classification results would be minor.

In this analysis, compounds metabolized rapidly
through specific metabolic pathways not shared by other
compounds in the data set are likely to be misclassified.
For example, fluorouracil, which was misclassifed by
two ratings, is known to be rapidly reduced to dihydro-
fluorouracil.29 Such cases could not be generalized with
respect to analysis descriptors, due to the few examples
available. In contrast, since many amines were present
in the data set, detailed descriptors to discriminate
amines could be specified.

Classification Results. A detailed breakdown of the
classification results by category is presented in Table

Table 7. Classification Results by Category

class no. correct mis(1)a mis(2)b mis(3)c

all 232 165 59 8 0
4 78 69 9 0 0
3 63 52 10 1
2 54 28 25 1
1 37 16 15 6 0
a Misclassified by one category. b Misclassified by two categories.

c Misclassified by three categories.
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7. Overall, the bioavailability of 71% of the compounds
were correctly classified and 97% were correct to within
one class. There was a striking difference in classifica-
tion accuracy depending on how bioavailable the com-
pounds were. Some 88% of class 4 compounds were
correct (100% within one class), and a similar result was
obtained for class 3 compounds, with 83% correct.
Accuracy dropped off for class 2 and class 1 compounds
to 52% and 43% correct, respectively. Only in the case
of class 1 compounds were a significant number (16%)
misclassified by two categories.

The accuracy of the classification of compounds with
lower bioavailability will be negatively influenced by
unrecognized structural entities leading to rapid me-
tabolism. It is difficult to identify these and include

them in the model when representative examples are
few. Another factor may be the smaller number of
compounds in the lower bioavailability classes since the
ORMUCS method sets classifications to maximize the
overall number of correct classifications. Thus, there will
be a weighting favoring class 4 and 3 compounds.

Of the 67 misclassified compounds, 48 were over-
predicted and 19 underpredicted. Only class 2 and 3
compounds can be misclassified in either direction.
Considering just these, 21 class 2 compounds were
overpredicted and five underpredicted. For class 3, the
numbers were six and five, respectively. A bias toward
overprediction is to be expected from the factors dis-
cussed in the preceding paragraph. In terms of clas-
sification errors, it is better in a practical sense for these
to be in the direction of overestimation. This reduces
the chance that compounds with adequate bioavailabil-
ity will be overlooked. To illustrate the point, only six
compounds were misclassified as belonging to the lowest
bioavailability category.

Another way of viewing the results is presented in
Table 8. This arranges the data according to the
compounds predicted to be in each class as opposed to
those actually present in each class. It can be seen that
91% of the compounds predicted to be in class 4 were
correctly classified (99% within one class). Together the

Table 8. Classification Results - Outcome by Compound
Predictiona

compounds
predicted to
be in class no. correct mis(1) mis(2) mis(3)

all 232 165 59 8 0
4 76 69 6 1 0
3 87 52 29 6 -
2 47 28 19 0 -
1 22 16 5 1 0

a See footnotes a-c of Table 7.

Table 9. Test Set Results

class

no. drug typea log D6.5 ∆ log Db pKa structural descriptorsc obsd calcd score (calcd)

1 budenoside N 3.20 0.00 6,7 1 2 2.55
2 fenoterol B -1.17d -0.90 9.3f 4(3), 6, 9 1 1 0.49
3 flumazenil B 1.01 -0.14 6.2f 7, 12 1 2 2.75
4 nivadipine N 1.99d 0.00 7(2), 13, 15 1 1 1.76
5 metaproterenol B -2.72d -0.90 9.3 4(2), 6 1 1 1.52
6 rimiterol B -3.13d -0.90 9.9f 4(2), 6 1 1 1.42
7 terguride B 2.05e -0.32 6.8f 9, 11, 12 1 3 3.35
8 raloxifene B 1.08e -0.90 9.0f 4(2), 11 1 1 1.54
9 ajmaline B 2.42e -0.25 6.5f 6(2), 8, 12 2 2 2.57

10 atovaquone N 3.96e 4 2 2 2.51
11 carvedilol B 1.31 -0.90 9.3f 8(2), 6 2 2 2.61
12 tizanidine B -0.68e -0.81 8.0f 2 4 4.03
13 rizatriptan B -0.53e -0.90 9.0f 12 2 3 3.51
14 fluvastatin A 1.42e 0.90 4.5f 6(2), 8 2 3 3.68
15 terbinafin B 3.30e -0.86 8.5f 10 2 3 3.25
16 amiloride B -3.33e -0.90 8.7 16(2.0) 3 3 3.61
17 bromfenac A 1.39e 0.90 4.3 8, 16(3.0) 3 3 3.86
18 cerevastatin A 1.06e 0.90 4.5f 6(2) 3 4 4.26
19 dexfenfluramine B 0.40e -0.90 10.0 9 3 3 3.77
20 methotrexate A -4.55 0.90 3.8 9, 16(6.2) 3 3 3.65
21 mibefradil B 1.25e -0.90 9.3f 9(2), 7 3 2 2.38
22 mirtazapine B 2.01e -0.55 7.1f 9, 12 3 3 3.27
23 olanzapine B -0.02e -0.81 8.0f 9, 12 3 3 3.41
24 riluzole B 1.23e -0.25 6.5f 16(6.5) 3 3 3.94
25 risperidone B 0.74e -0.90 8.7f 11 3 3 3.64
26 tramodol B 0.85 -0.90 9.4 3 3 3.97
27 zidovudine N 0.05 6, 10 3 3 3.98
28 citalopram B 0.45e -0.90 9.2 4 4 4.00
29 dofetilide B 0.44 -0.52 7.0 12 4 3 3.74
30 etodolac A 1.96 0.90 4.7 8, 9(2) 4 3 3.39
31 guanafacine B 0.46e -0.90 8.7 4 4 4.00
32 lamotrigine B 1.91e -0.05 5.7 16(5.7) 4 3 3.93
33 lansoprazole N 1.73e 4 4 4.17
34 levonorgestrel N 3.87e 10, 14 4 3 3.12
35 milrinone B 0.68e -0.02 5.2f 9 4 4 4.08
36 nevirapine N 1.92 9 4 3 3.90
37 pirmenol B -0.53e -0.90 10.2f 4 4 4.03
38 pramipexole B -2.90e -0.90 11.0f 9, 16(4.5) 4 3 3.35
39 rilmenidine B -0.94e -0.90 9.3f 4 4 4.01
40 terazosin B 0.29 -0.52 7.1 16(7.1) 4 3 3.91
a-f See Table 6.
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results from Tables 7 and 8 indicate a high degree of
reliability for compound predictions in the g80% bio-
availability range. In the case of class 3 compounds, 87
were predicted to belong to this class, with 52 correctly
classified, compared to 63 actually present resulting in
a lower correct classification rate of 60% (93% ( one
class) in contrast to the 83% from Table 7. The implica-
tion here is that a high proportion of actual class 3
compounds will be identified but a significant number
of others will be incorrectly assigned to this class. Those
compounds predicted to be class 2 compounds were 60%
correct (100% ( one class), a somewhat higher percent-
age than in Table 7, due to the lower number predicted
to be in this category. Only 22 of 37 actual compounds
were placed by the model in class 1. Of these, a high
proportion (73%) was correct. This suggests that the
class 1 predictions made by the model would be reason-
ably accurate but that a significant proportion of
compounds in the e20% category would be overesti-
mated.

Test Set Results. To evaluate the performance of the
QSAR model, a separate compound test set of 40
additional compounds was subsequently assembled
(Table 9) and the bioavailability classifications of these
were calculated manually using eq 8 of Table 5. This
gave 24 compounds (60%) correctly classified with 38
(95%) correct to within one class. As in the original data
set, performance was somewhat better with classes 4
and 3 (64% correct, 96% ( one class) than with the lower
bioavailability categories 2 and 1 (53% correct, 87% (
one class). Thus, although there was some loss of
accuracy for the higher bioavailability categories, results
from the test compounds were generally in line with
those from the model data set.

Limitations. The QSAR model would be expected to
perform well for predicting the bioavailability of com-
pounds within the general universe of structural types
represented in the data set from which the model was
derived. Indeed, this was demonstrated using the test
set compounds. However, for compounds outside of this
realm (see listing of these types in the earlier section
on bioavailabilty), this would not be the case. Also, high
molecular weight compounds (>500) and those with
strong hydrogen-bonding capability are known to have
reduced absorption potential, and these types of com-
pounds do not have significant representation in the
data set. Such compounds can be identified as problem-
atic for bioavailability using criteria described by Lip-
insky18 in his “rule of five”. Peptides and peptide-like
compounds, which are rare as orally active drugs, are
not in the data set, so the model is not designed to
handle these. The model assumes absorption by passive
diffusion and so would not be appropriate for the small
minority of compounds absorbed through other mech-
anisms.

Structural descriptors in the model have a single
averaged weighting value for all of the compounds
containing that particular feature, but it is clear that
for certain compounds the actual effect might represent
a wide divergence from this average value. In addition,
structural factors affecting the bioavailabilty of particu-
lar compounds through rapid metabolism may not have
been included in the model because too few examples
were present in the data set.

Conclusions

We believe that the feasibility of constructing a QSAR
model for predicting the approximate human oral bio-
availabilty of prospective new medicinal agents has been
clearly demonstrated. The model, developed from hu-
man oral bioavailability data on a diverse set of 232
drugs, performed well, and a significant level of dis-
crimination in bioavailabilty level was achieved despite
the inherent complexity involved. The model can be
readily employed for so-called “drug-like” compounds
commonly worked with in drug discovery projects.
Animal data, which does not always correlate with
human data, is not utilized, and predictions do not
require experimental data and thus can be made for
unsynthesized compounds. Predictions of compound
human oral bioavailability do not require the use of the
ORMUCS program, which is only employed for the
development of the model. They can be easily made
using a hand calculator (or through a simple calculation
program) of the compound score using the model equa-
tion and the relevant descriptors for that compound. The
model has the advantage of transparency in that it
indicates which factors may affect bioavailability and
the extent of that effect, thus providing the basis for
designing improved compounds. Refinement of the
model is possible with the availability and incorporation
of more compound bioavailability data, and future work
along these lines is planned. The model could be used
in drug discovery projects as an input for decision
making and priority setting concerning new compounds
to be synthesized and the selection of existing com-
pounds for detailed workup.
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